Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
PLoS One ; 19(3): e0293049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512923

RESUMO

African swine fever (ASF) is a devastating disease of domestic pigs that has spread across the globe since its introduction into Georgia in 2007. The etiological agent is a large double-stranded DNA virus with a genome of 170 to 180 kb in length depending on the isolate. Much of the differences in genome length between isolates are due to variations in the copy number of five different multigene families that are encoded in repetitive regions that are towards the termini of the covalently closed ends of the genome. Molecular epidemiology of African swine fever virus (ASFV) is primarily based on Sanger sequencing of a few conserved and variable regions, but due to the stability of the dsDNA genome changes in the variable regions occur relatively slowly. Observations in Europe and Asia have shown that changes in other genetic loci can occur and that this could be useful in molecular tracking. ASFV has been circulating in Western Africa for at least forty years. It is therefore reasonable to assume that changes may have accumulated in regions of the genome other than the standard targets over the years. At present only one full genome sequence is available for an isolate from Western Africa, that of a highly virulent isolate collected from Benin during an outbreak in 1997. In Cameroon, ASFV was first reported in 1981 and outbreaks have been reported to the present day and is considered endemic. Here we report three full genome sequences from Cameroon isolates of 1982, 1994 and 2018 outbreaks and identify novel single nucleotide polymorphisms and insertion-deletions that may prove useful for molecular epidemiology studies in Western Africa and beyond.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Febre Suína Africana/epidemiologia , Camarões/epidemiologia , Sus scrofa/genética , Análise de Sequência , Análise de Sequência de DNA
2.
Emerg Microbes Infect ; 12(2): 2265661, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37781934

RESUMO

African swine fever virus is a complex DNA virus that causes high fatality in pigs and wild boar and has a great socio-economic impact. An attenuated genotype II strain was constructed by replacing the gene for wildtype CD2v protein with versions in which single or double amino acid substitutions were introduced to reduce or abrogate the binding to red blood cells and reduce virus persistence in blood. The mutant CD2v proteins were expressed at similar levels to the wildtype protein on the surface of infected cells. Three recombinant viruses also had K145R, EP153R, and in one virus DP148R genes deleted. Following immunization of pigs, the virus with a single amino acid substitution in CD2v, Q96R, induced moderate levels of replication, and 100% protection against virulent ASFV. Two additional recombinant viruses had two amino acid substitutions in CD2v, Q96R, and K108D, and induced no binding to red blood cells in vitro. In immunized pigs, reduced levels of virus in blood and strong early ASFV-specific antibody and cellular responses were detected. After challenge low to moderate replication of challenge virus was observed. Reduced clinical signs post-challenge were observed in pigs immunized with the virus from which DP148R gene was deleted. Protection levels of 83-100% were maintained across a range of doses. Further experiments with virus GeorgiaΔDP148RΔK145RΔEP153R-CD2v_mutantQ96R/K108D showed low levels of virus dissemination in tissue and transient clinical signs at high doses. The results support further evaluation of GeorgiaΔDP148RΔK145RΔEP153R-CD2v_mutantQ96R/K108D as a vaccine candidate.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/prevenção & controle , Proteínas Virais/genética , Genótipo , Anticorpos Antivirais
3.
J Virol ; 97(10): e0110623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796125

RESUMO

IMPORTANCE: African swine fever virus (ASFV) causes a lethal disease of pigs with high economic impact in affected countries in Africa, Europe, and Asia. The virus encodes proteins that inhibit host antiviral defenses, including the type I interferon response. Host cells also activate cell death through a process called apoptosis to limit virus replication. We showed that the ASFV A179L protein, a BCL-2 family apoptosis inhibitor, is important in reducing apoptosis in infected cells since deletion of this gene increased cell death and reduced virus replication in cells infected with the A179L gene-deleted virus. Pigs immunized with the BeninΔA179L virus showed no clinical signs and a weak immune response but were not protected from infection with the deadly parental virus. The results show an important role for the A179L protein in virus replication in macrophages and virulence in pigs and suggest manipulation of apoptosis as a possible route to control infection.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Apoptose , Deleção de Genes , Macrófagos , Proteínas Proto-Oncogênicas c-bcl-2 , Suínos , Proteínas Virais , Virulência , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Macrófagos/virologia , Proteínas Proto-Oncogênicas c-bcl-2/deficiência , Proteínas Proto-Oncogênicas c-bcl-2/genética , Suínos/virologia , Virulência/genética , Replicação Viral , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Proteínas Virais/genética
4.
Viruses ; 16(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275939

RESUMO

The 2023 International African Swine Fever Workshop (IASFW) took place in Beijing, China, on 18-20 September 2023. It was jointly organized by the U.S.-China Center for Animal Health (USCCAH) at Kansas State University (KSU) and the Chinese Veterinary Drug Association (CVDA) and sponsored by the United States Department of Agriculture Foreign Agricultural Service (USDA-FAS), Harbin Veterinary Research Institute, and Zoetis Inc. The objective of this workshop was to provide a platform for ASF researchers around the world to unite and share their knowledge and expertise on ASF control and prevention. A total of 24 outstanding ASF research scientists and experts from 10 countries attended this meeting. The workshop included presentations on current ASF research, opportunities for scientific collaboration, and discussions of lessons and experiences learned from China/Asia, Africa, and Europe. This article summarizes the meeting highlights and presents some critical issues that need to be addressed for ASF control and prevention in the future.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Humanos , Febre Suína Africana/prevenção & controle , Febre Suína Africana/epidemiologia , Ásia , China/epidemiologia , África/epidemiologia , Sus scrofa , Surtos de Doenças/veterinária
5.
Eur J Wildl Res ; 68(6): 69, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213142

RESUMO

Contact between wild animals and farmed livestock may result in disease transmission with huge financial, welfare and ethical consequences. Conflicts between people and wildlife can also arise when species such as wild boar (Sus scrofa) consume crops or dig up pasture. This is a relatively recent problem in England where wild boar populations have become re-established in the last 20 years following a 500-year absence. The aim of this pilot study was to determine if and how often free-living wild boar visited two commercial pig farms near the Forest of Dean in southwest England. We placed 20 motion-sensitive camera traps at potential entry points to, and trails surrounding, the perimeter of two farmyards housing domestic pigs between August 2019 and February 2021, covering a total of 6030 trap nights. Forty wild boar detections were recorded on one farm spread across 27 nights, with a median (range) of 1 (0 to 7) night of wild boar activity per calendar month. Most of these wild boar detections occurred between ten and twenty metres of housed domestic pigs. No wild boar was detected at the other farm. These results confirm wild boar do visit commercial pig farms, and therefore, there is potential for contact and pathogen exchange between wild boar and domestic pigs. The visitation rates derived from this study could be used to parameterise disease transmission models of pathogens common to domestic pigs and wild boars, such as the African swine fever virus, and subsequently to develop mitigation strategies to reduce unwanted contacts.

6.
Ecol Evol ; 12(6): e9031, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784084

RESUMO

Predicting the likelihood of wildlife presence at potential wildlife-livestock interfaces is challenging. These interfaces are usually relatively small geographical areas where landscapes show large variation over small distances. Models of wildlife distribution based on coarse data over wide geographical ranges may not be representative of these interfaces. High-resolution data can help identify fine-scale predictors of wildlife habitat use at a local scale and provide more accurate predictions of species habitat use. These data may be used to inform knowledge of interface risks, such as disease transmission between wildlife and livestock, or human-wildlife conflict.This study uses fine-scale habitat use data from wild boar (Sus scrofa) based on activity signs and direct field observations in and around the Forest of Dean in Gloucestershire, England. Spatial logistic regression models fitted using a variant of penalized quasi-likelihood were used to identify habitat-based and anthropogenic predictors of wild boar signs.Our models showed that within the Forest of Dean, wild boar signs were more likely to be seen in spring, in forest-type habitats, closer to the center of the forest and near litter bins. In the area surrounding the Forest of Dean, wild boar signs were more likely to be seen in forest-type habitats and near recreational parks and less likely to be seen near livestock.This approach shows that wild boar habitat use can be predicted using fine-scale data over comparatively small areas and in human-dominated landscapes, while taking account of the spatial correlation from other nearby fine-scale data-points. The methods we use could be applied to map habitat use of other wildlife species in similar landscapes, or of movement-restricted, isolated, or fragmented wildlife populations.

7.
Methods Mol Biol ; 2503: 73-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35575887

RESUMO

Genetic manipulation of ASFV has been increasingly used not only for the development of live attenuated vaccines but also as an indispensable tool to further our understanding of the virus-host interactions. Here we present methods for isolation of porcine bone marrow cells and purification of recombinant ASFV using both chromogenic and fluorescent reporters. We also describe in detail a newly developed method to purify genetically modified ASFV using fluorescence-activated cell sorting (FACS).


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/genética , Animais , Células da Medula Óssea , Suínos , Vacinas Atenuadas , Proteínas Virais/genética
8.
J Virol ; 96(6): e0189921, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044212

RESUMO

African swine fever virus multigene family (MGF) 360 and 505 genes have roles in suppressing the type I interferon response and in virulence in pigs. The role of the individual genes is poorly understood. Different combinations of these genes were deleted from the virulent genotype II Georgia 2007/1 isolate. Deletion of five copies of MGF 360 genes, MGF360-10L, -11L, -12L, -13L, and -14L, and three copies of MGF505-1R, -2R, and -3R reduced virus replication in macrophages and attenuated virus in pigs. However, only 25% of the immunized pigs were protected against challenge. Deletion of MGF360-12L, -13L, and -14L and MGF505-1R in combination with a negative serology marker, K145R (GeorgiaΔK145RΔMGF(A)), reduced virus replication in macrophages and virulence in pigs, since no clinical signs or virus genome in blood were observed following immunization. Four of six pigs were protected after challenge. In contrast, deletion of MGF360-13L and -14L, MGF505-2R and -3R, and K145R (GeorgiaΔK145RΔMGF(B)) did not reduce virus replication in macrophages. Following immunization of pigs, clinical signs were delayed, but all pigs reached the humane endpoint. Deletion of genes MGF360-12L, MGF505-1R, and K145R reduced replication in macrophages and attenuated virulence in pigs since no clinical signs or virus genome in blood were observed following immunization. Thus, the deletion of MGF360-12L and MGF505-1R, in combination with K145R, was sufficient to dramatically attenuate virus infection in pigs. However, only two of six pigs were protected, suggesting that deletion of additional MGF genes is required to induce a protective immune response. Deletion of MGF360-12L, but not MGF505-1R, from the GeorgiaΔK145R virus reduced virus replication in macrophages, indicating that MGF360-12L was most critical for maintaining high levels of virus replication in macrophages. IMPORTANCE African swine fever has a high socioeconomic impact and no vaccines to aid control. The African swine fever virus (ASFV) has many genes that inhibit the host's interferon response. These include related genes that are grouped into multigene families, including MGF360 and 505. Here, we investigated which MGF360 and 505 genes were most important for viral attenuation and protection against genotype II strains circulating in Europe and Asia. We compared viruses with deletions of MGF genes. Deletion of just two MGF genes in combination with a third gene, K145R, a possible marker for vaccination, is sufficient for virus attenuation in pigs. Deletion of additional MGF360 genes was required to induce higher levels of protection. Furthermore, we showed that the deletion of MGF360-12L, combined with K145R, impairs virus replication in macrophages in culture. Our results have important implications for understanding the roles of the ASFV MGF genes and for vaccine development.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas Virais , Vacinas Virais , Virulência , Replicação Viral , Febre Suína Africana/prevenção & controle , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Animais , Deleção de Genes , Genótipo , Macrófagos/virologia , Família Multigênica/genética , Suínos , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Virulência/genética , Replicação Viral/genética
9.
J Virol ; 96(1): e0134021, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643433

RESUMO

The limited knowledge on the role of many of the approximately 170 proteins encoded by African swine fever virus restricts progress toward vaccine development. Previously, the DP148R gene was deleted from the genome of genotype I virulent Benin 97/1 isolate. This virus, BeninΔDP148R, induced transient moderate clinical signs after immunization and high levels of protection against challenge. However, the BeninΔDP148R virus and genome persisted in blood over a prolonged period. In the current study, deletion of either EP402R or EP153R genes individually or in combination from BeninΔDP148R genome was shown not to reduce virus replication in macrophages in vitro. However, deletion of EP402R dramatically reduced the period of infectious virus persistence in blood in immunized pigs from 28 to 14 days and virus genome from 59 to 14 days while maintaining high levels of protection against challenge. The additional deletion of EP153R (BeninΔDP148RΔEP153RΔEP402R) further attenuated the virus, and no viremia or clinical signs were observed postimmunization. This was associated with decreased protection and detection of moderate levels of challenge virus in blood. Interestingly, the deletion of EP153R alone from BeninΔDP148R did not result in further virus attenuation and did not reduce the period of virus persistence in blood. These results show that EP402R and EP153R have a synergistic role in reducing clinical signs and levels of virus in blood. IMPORTANCE African swine fever virus (ASFV) causes a disease of domestic pigs and wild boar which results in death of almost all infected animals. The disease has a high economic impact, and no vaccine is available. We investigated the role of two ASFV proteins, called EP402R and EP153R, in determining the levels and length of time virus persists in blood from infected pigs. EP402R causes ASFV particles and infected cells to bind to red blood cells. Deletion of the EP402R gene dramatically reduced virus persistence in blood but did not reduce the level of virus. Deletion of the EP153R gene alone did not reduce the period or level of virus persistence in blood. However, deleting both EP153R and EP402R resulted in undetectable levels of virus in blood and no clinical signs showing that the proteins act synergistically. Importantly, the infected pigs were protected following infection with the wild-type virus that kills pigs.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/virologia , Proteínas Virais/metabolismo , Viremia/virologia , Febre Suína Africana/imunologia , Febre Suína Africana/metabolismo , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Biomarcadores , Células Cultivadas , Engenharia Genética , Genótipo , Interações Hospedeiro-Patógeno , Imunização , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Deleção de Sequência , Suínos , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Virulência , Replicação Viral
10.
Viruses ; 13(8)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34452339

RESUMO

African swine fever virus causes a frequently fatal disease of domestic pigs and wild boar that has a high economic impact across 3 continents. The large double-stranded DNA genome codes for approximately 160 proteins. Many of these have unknown functions and this hinders our understanding of the virus and host interactions. The purpose of the study was to evaluate the role of two virus proteins, K145R and DP148R, in virus replication in macrophages and virulence in pigs. To do this, the DP148R gene, alone or in combination with the K145R gene, was deleted from the virulent genotype II Georgia 2007/1 isolate. Neither of these deletions reduced the ability of the viruses to replicate in porcine macrophages compared to the parental wild-type virus. Pigs infected with GeorgiaΔDP148R developed clinical and post-mortem signs and high viremia, typical of acute African swine fever, and were culled on day 6 post-infection. The additional deletion of the K145R gene delayed the onset of clinical signs and viremia in pigs by 3 days, but pigs showed signs of acute African swine fever and were culled on days 10 or 13 post-infection. The results show that the deletion of DP148R did not attenuate the genotype II Georgia 2007/1 isolate, contrary to the results obtained with the genotype I Benin97/1 isolate. Additional deletion of the K145R gene delayed clinical signs, but infected pigs reached the humane endpoint. The deletion of additional genes would be required to attenuate the virus.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/virologia , Proteínas Virais/genética , Vírus da Febre Suína Africana/fisiologia , Animais , Deleção de Genes , Macrófagos/virologia , Suínos , Proteínas Virais/metabolismo , Virulência , Replicação Viral
11.
Pathogens ; 10(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207265

RESUMO

The understanding of the pathogenic mechanisms and the clinicopathological forms caused by currently circulating African swine fever virus (ASFV) isolates is incomplete. So far, most of the studies have been focused on isolates classified within genotypes I and II, the only genotypes that have circulated outside of Africa. However, less is known about the clinical presentations and lesions induced by isolates belonging to the other twenty-two genotypes. Therefore, the early clinicopathological identification of disease outbreaks caused by isolates belonging to, as yet, not well-characterised ASFV genotypes may be compromised, which might cause a delay in the implementation of control measures to halt the virus spread. To improve the pathological characterisation of disease caused by diverse isolates, we have refined the macroscopic and histopathological evaluation protocols to standardise the scoring of lesions. Domestic pigs were inoculated intranasally with different doses (high, medium and low) of ASFV isolate Ken05/Tk1 (genotype X). To complement previous studies, the distribution and severity of macroscopic and histopathological lesions, along with the amount and distribution of viral antigen in tissues, were characterised by applying the new scoring protocols. The intranasal inoculation of domestic pigs with high doses of the Ken05/Tk1 isolate induced acute forms of ASF in most of the animals. Inoculation with medium doses mainly induced acute forms of disease. A less severe but longer clinical course, typical of subacute forms, characterised by the presence of more widespread and severe haemorrhages and oedema, was observed in one pig inoculated with the medium dose. The severity of vascular lesions (haemorrhages and oedema) induced by high and medium doses was not associated with the amount of virus antigen detected in tissues, therefore these might be attributed to indirect mechanisms not evaluated in the present study. The absence of clinical signs, lesions and detectable levels of virus genome or antigen in blood from the animals inoculated with the lowest dose ruled out the existence of possible asymptomatic carriers or persistently infected pigs, at least for the 21 days period of the study. The results corroborate the moderate virulence of the Ken05/Tk1 isolate, as well as its capacity to induce both the acute and, occasionally, subacute forms of ASF when high and medium doses were administered intranasally.

12.
PeerJ ; 8: e10221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173619

RESUMO

Wild animals are the source of many pathogens of livestock and humans. Concerns about the potential transmission of economically important and zoonotic diseases from wildlife have led to increased surveillance at the livestock-wildlife interface. Knowledge of the types, frequency and duration of contacts between livestock and wildlife is necessary to identify risk factors for disease transmission and to design possible mitigation strategies. Observing the behaviour of many wildlife species is challenging due to their cryptic nature and avoidance of humans, meaning there are relatively few studies in this area. Further, a consensus on the definition of what constitutes a 'contact' between wildlife and livestock is lacking. A systematic review was conducted to investigate which livestock-wildlife contacts have been studied and why, as well as the methods used to observe each species. Over 30,000 publications were screened, of which 122 fulfilled specific criteria for inclusion in the analysis. The majority of studies examined cattle contacts with badgers or with deer; studies involving wild pig contacts with cattle or with domestic pigs were the next most frequent. There was a range of observational methods including motion-activated cameras and global positioning system collars. As a result of the wide variation and lack of consensus in the definitions of direct and indirect contacts, we developed a unified framework to define livestock-wildlife contacts that is sufficiently flexible to be applied to most wildlife and livestock species for non-vector-borne diseases. We hope this framework will help standardise the collection and reporting of contact data; a valuable step towards being able to compare the efficacy of wildlife-livestock observation methods. In doing so, it may aid the development of better disease transmission models and improve the design and effectiveness of interventions to reduce or prevent disease transmission.

13.
Viruses ; 12(6)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516890

RESUMO

African swine fever (ASF) is a devastating disease in pigs, with no vaccines for control. The genetic manipulation of African swine fever virus (ASFV) is often tedious and time consuming. Here, we describe a method to manipulate the virus genome to produce gene deletion viruses in a much-reduced time. This method combines the conventional homologous recombination with fluorescent-activated cells sorting (FACS), to isolate and purify viruses expressing fluorescent reporter genes. With three rounds of single cell isolation via FACS and two rounds of limiting dilution, we deleted two additional genes, EP153R and EP402R, from Benin 97/1 ASFV lacking the DP148R gene. By combining different fluorescent markers, this method has the potential to greatly facilitate studies on understanding ASFV gene functions and develop candidate live-attenuated vaccines.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/imunologia , Animais , Engenharia Genética , Genoma Viral , Recombinação Genética , Suínos , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
14.
Vaccines (Basel) ; 8(2)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486154

RESUMO

Live attenuated vaccines are considered to be the fastest route to the development of a safe and efficacious African swine fever (ASF) vaccine. Infection with the naturally attenuated OURT88/3 strain induces protection against challenge with virulent isolates from the same or closely related genotypes. However, adverse clinical signs following immunisation have been observed. Here, we attempted to increase the OURT88/3 safety profile by deleting I329L, a gene previously shown to inhibit the host innate immune response. The resulting virus, OURT88/3ΔI329L, was tested in vitro to evaluate the replication and expression of type I interferon (IFN) and in vivo by immunisation and lethal challenge experiments in pigs. No differences were observed regarding replication; however, increased amounts of both IFN-ß and IFN-α were observed in macrophages infected with the deletion mutant virus. Unexpectedly, the deletion of I329L markedly reduced protection against challenge with the virulent OURT88/1 isolate. This was associated with a decrease in both antibody levels against VP72 and the number of IFN-γ-producing cells in the blood of non-protected animals. Furthermore, a significant increase in IL-10 levels in serum was observed in pigs immunised with OURT88/3ΔI329L following challenge. Interestingly, the deletion of the I329L gene failed to attenuate the virulent Georgia/2007 isolate.

15.
Emerg Microbes Infect ; 9(1): 1245-1253, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32515659

RESUMO

The main target cells for African swine fever virus (ASFV) replication in pigs are of monocyte macrophage lineage and express markers typical of the intermediate to late stages of differentiation. The lack of a porcine cell line, which accurately represents these target cells, limits research on virus host interactions and the development of live-attenuated vaccine strains. We show here that the continuously growing, growth factor dependent ZMAC-4 porcine macrophage cell line is susceptible to infection with eight different field isolates of ASFV. Replication in ZMAC-4 cells occurred with similar kinetics and to similar high titres as in primary porcine bone marrow cells. In addition we showed that twelve passages of an attenuated strain of ASFV, OURT88/3, in ZMAC-4 cells did not reduce the ability of this virus to induce protection against challenge with virulent virus. Thus, the ZMAC-4 cells provide an alternative to primary cells for ASFV replication.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Técnicas de Cultura de Células/métodos , Macrófagos/citologia , Vacinas Atenuadas/farmacologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/isolamento & purificação , Animais , Células da Medula Óssea/virologia , Linhagem Celular , Proliferação de Células , Macrófagos/virologia , Inoculações Seriadas , Suínos , Vacinas Atenuadas/imunologia , Replicação Viral
16.
Vaccines (Basel) ; 8(2)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443536

RESUMO

Classical approaches to African swine fever virus (ASFV) vaccine development have not been successful; inactivated virus does not provide protection and use of live attenuated viruses generated by passage in tissue culture had a poor safety profile. Current African swine fever (ASF) vaccine research focuses on the development of modified live viruses by targeted gene deletion or subunit vaccines. The latter approach would be differentiation of vaccinated from infected animals (DIVA)-compliant, but information on which viral proteins to include in a subunit vaccine is lacking. Our previous work used DNA-prime/vaccinia-virus boost to screen 40 ASFV genes for immunogenicity, however this immunization regime did not protect animals after challenge. Here we describe the induction of both antigen and ASFV-specific antibody and cellular immune responses by different viral-vectored pools of antigens selected based on their immunogenicity in pigs. Immunization with one of these pools, comprising eight viral-vectored ASFV genes, protected 100% of pigs from fatal disease after challenge with a normally lethal dose of virulent ASFV. This data provide the basis for the further development of a subunit vaccine against this devastating disease.

17.
J Virol ; 94(14)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32376618

RESUMO

Following short immunization protocols, naturally attenuated African swine fever virus (ASFV) isolate OURT88/3 and deletion mutant BeninΔMGF have previously been shown to induce high percentages of protection in domestic pigs against challenge with virulent virus. The results obtained in the present study show that a single intramuscular immunization of domestic pigs with OURT88/3 or BeninΔMGF followed by a challenge with the virulent Benin 97/1 isolate at day 130 postimmunization did not trigger the mechanisms necessary to generate immunological memory able to induce long-term protection against disease. All pigs developed acute forms of acute swine fever (ASF). Gamma interferon-producing cells peaked at day 24 postimmunization, declining thereafter. Surprisingly, the levels of regulatory T cells (Tregs) and interleukin-10 (IL-10) were elevated at the end of the experiment, suggesting that regulatory components of the immune system may inhibit effective protection.IMPORTANCE The duration of immunity for any vaccine candidate is crucial. In the case of African swine fever virus vaccine candidates, this issue has received little attention. Attenuated viruses have proven protective following short immunization protocols in which pigs were challenged a few weeks after the first immunization. Here, the duration of immunity and the immune responses induced over a duration of 130 days were studied during prechallenge and after challenge of pigs immunized with the naturally attenuated isolate OURT88/3 and an attenuated gene-deleted isolate, BeninΔMGF. After a single intramuscular immunization of domestic pigs with the OURT88/3 isolate or BeninΔMGF virus, animals were not protected against challenge with the virulent Benin 97/1 ASFV genotype I isolate at day 130 postimmunization. The levels of regulatory T cells and IL-10 were elevated at the end of the experiment, suggesting that regulatory components of the immune system may inhibit effective protection.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Interleucina-10/imunologia , Linfócitos T Reguladores/imunologia , Vacinas Virais/imunologia , Febre Suína Africana/patologia , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/isolamento & purificação , Animais , Suínos , Linfócitos T Reguladores/patologia , Vacinas Atenuadas/imunologia
18.
Annu Rev Anim Biosci ; 8: 221-246, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31743062

RESUMO

African swine fever is a devastating disease that can result in death in almost all infected pigs. The continuing spread of African swine fever from Africa to Europe and recently to the high-pig production countries of China and others in Southeast Asia threatens global pork production and food security. The African swine fever virus is an unusual complex DNA virus and is not related to other viruses. This has presented challenges for vaccine development, and currently none is available. The virus is extremely well adapted to replicate in its hosts in the sylvatic cycle in East and South Africa. Its spread to other regions, with different wildlife hosts, climatic conditions, and pig production systems, has revealed unexpected epidemiological scenarios and different challenges for control. Here we review the epidemiology of African swine fever in these different scenarios and methods used for control. We also discuss progress toward vaccine development and research priorities to better understand this complex disease and improve control.


Assuntos
Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/imunologia , Criação de Animais Domésticos/métodos , Animais , Animais Selvagens , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Suínos , Vacinas Virais
19.
Viruses ; 11(9)2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514438

RESUMO

African swine fever (ASF) is a severe disease of suids caused by African swine fever virus (ASFV). Its dsDNA genome (170-194 kbp) is scattered with homopolymers and repeats as well as inverted-terminal-repeats (ITR), which hamper whole-genome sequencing. To date, only a few genome sequences have been published and only for some are data on sequence quality available enabling in-depth investigations. Especially in Europe and Asia, where ASFV has continuously spread since its introduction into Georgia in 2007, a very low genetic variability of the circulating ASFV-strains was reported. Therefore, only whole-genome sequences can serve as a basis for detailed virus comparisons. Here, we report an effective workflow, combining target enrichment, Illumina and Nanopore sequencing for ASFV whole-genome sequencing. Following this approach, we generated an improved high-quality ASFV Georgia 2007/1 whole-genome sequence leading to the correction of 71 sequencing errors and the addition of 956 and 231 bp at the respective ITRs. This genome, derived from the primary outbreak in 2007, can now serve as a reference for future whole-genome analyses of related ASFV strains and molecular approaches. Using both workflow and the reference genome, we generated the first ASFV-whole-genome sequence from Moldova, expanding the sequence knowledge from Eastern Europe.


Assuntos
Vírus da Febre Suína Africana/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas Virais/genética , Sequenciamento Completo do Genoma/métodos , Febre Suína Africana/virologia , Animais , DNA Viral/genética , Bases de Dados de Ácidos Nucleicos , Variação Genética , Sequenciamento por Nanoporos/métodos , Suínos/virologia , Fluxo de Trabalho
20.
Viruses ; 11(9)2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461953

RESUMO

Subversion of programmed cell death-based host defence systems is a prominent feature of infections by large DNA viruses. African swine fever virus (ASFV) is a large DNA virus and sole member of the Asfarviridae family that harbours the B-cell lymphoma 2 or Bcl-2 homolog A179L. A179L has been shown to bind to a range of cell death-inducing host proteins, including pro-apoptotic Bcl-2 proteins as well as the autophagy regulator Beclin. Here we report the crystal structure of A179L bound to the Beclin BH3 motif. A179L engages Beclin using the same canonical ligand-binding groove that is utilized to bind to pro-apoptotic Bcl-2 proteins. The mode of binding of Beclin to A179L mirrors that of Beclin binding to human Bcl-2 and Bcl-xL as well as murine γ-herpesvirus 68. The introduction of bulky hydrophobic residues into the A179L ligand-binding groove via site-directed mutagenesis ablates binding of Beclin to A179L, leading to a loss of the ability of A179L to modulate autophagosome formation in Vero cells during starvation. Our findings provide a mechanistic understanding for the potent autophagy inhibitory activity of A179L and serve as a platform for more detailed investigations into the role of autophagy during ASFV infection.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Proteínas Reguladoras de Apoptose/química , Autofagia , Proteína Beclina-1/metabolismo , Proteínas Virais/química , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1/química , Chlorocebus aethiops , Cristalografia por Raios X , Humanos , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Células Vero , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA